Efficient exciton transport in layers of self-assembled porphyrin derivatives.
نویسندگان
چکیده
The photosynthetic apparatus of green sulfur bacteria, the chlorosome, is generally considered as a highly efficient natural light-harvesting system. The efficient exciton transport through chlorosomes toward the reaction centers originates from self-assembly of the bacteriochlorophyll molecules. The aim of the present work is to realize a long exciton diffusion length in an artificial light-harvesting system using the concept of self-assembled natural chlorosomal chromophores. The ability to transport excitons is studied for porphyrin derivatives with different tendencies to form molecular stacks by self-assembly. A porphyrin derivative denoted as ZnOP, containing methoxymethyl substituents ({meso-tetrakis[3,5-bis(methoxymethyl)phenyl]porphyrinato}zinc(II)) is found to form self-assembled stacks, in contrast to a derivative with tert-butyl substituents, ZnBuP ({meso-tetrakis[3,5-bis(tert-butyl)phenyl]porphyrinato}zinc(II)). Exciton transport and dissociation in a bilayer of these porphyrin derivatives and TiO2 are studied using the time-resolved microwave conductivity (TRMC) method. For ZnOP layers it is found that excitons undergo diffusive motion between the self-assembled stacks, with the exciton diffusion length being as long as 15 +/- 1 nm, which is comparable to that in natural chlorosomes. For ZnBuP a considerably shorter exciton diffusion length of 3 +/- 1 nm is found. Combining these exciton diffusion lengths with exciton lifetimes of 160 ps for ZnOP and 74 ps for ZnBuP yields exciton diffusion coefficients equal to 1.4 x 10(-6) m2/s and 1 x 10(-7) m2/s, respectively. The larger exciton diffusion coefficient for ZnOP originates from a strong excitonic coupling for interstack energy transfer. The findings show that energy transfer is strongly affected by the molecular organization. The efficient interstack energy transfer shows promising prospects for application of such self-assembled porphyrins in optoelectronics.
منابع مشابه
Exciton diffusion and interfacial charge separation in meso-tetraphenylporphyrin/TiO2 bilayers: effect of ethyl substituents.
The photoinduced charge separation efficiency in porphyrin/TiO2 bilayers has been determined using the time-resolved microwave conductivity (TRMC) technique. Porphyrins investigated are unsubstituted meso-tetraphenylporphyrin (TPP) and meso-tetra(4-ethylphenyl)porphyrin (TEPP). TEPP/TiO2 bilayers exhibit a charge separation efficiency per incident photon at the Soret band maximum of 6.2%, which...
متن کاملSelf-complementary double-stranded porphyrin arrays assembled from an alternating pyridyl–porphyrin sequence
Oligomeric porphyrin arrays with an alternating pyridyl–porphyrin sequence were synthesized to explore double-strand formation through self-complementary pyridyl-to-zinc axial coordination bonds. Competitive titration experiments revealed the thermodynamic aspects involved in the zipper effect within double-strand formation. Multiple axial coordination bonds defined the stacked conformation, de...
متن کاملSolvent-Tuned Self-Assembled Nanostructures of Chiral l/d-Phenylalanine Derivatives of Protoporphyrin IX
Protoporphyrin IX is a naturally occurring amphiphilic porphyrin with a rigid hydrophobic nonpolar core and two polar propionic acid substitutions on the porphyrin ring. This molecule can be modified on the hydrophilic group, which can lead to strengthened π-π-stacking and spontaneous self-assembly into novel nanostructures. Herein, we use l- phenylalanine and d-phenylalanine to modify protopor...
متن کاملLong-range energy transfer in self-assembled quantum dot-DNA cascades.
The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial pr...
متن کاملA supramolecular photosynthetic triad of slipped cofacial porphyrin dimer, ferrocene, and fullerene.
A supramolecular triad consisting of self-assembled imidazolyl-zinc-porphyrin dimer, ferrocene, and fullerene was successfully constructed, resulting in long-lived charge separated species after efficient photoinduced electron transfer and charge shift reactions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 8 شماره
صفحات -
تاریخ انتشار 2008